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Energy distribution of the quantum harmonic oscillator
under random time-dependent perturbations
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This paper investigates the evolution of a quantum particle in a harmonic oscillator driven by time-
dependent forces. The perturbations are small, but they act long enough so that we can solve the problem in the
asymptotic framework corresponding to a perturbation amplitude that tends to zero and a perturbation duration
that tends to infinity. We describe the effective evolution equation of the state vector, which reads as a
stochastic partial differential equation. We exhibit a closed-form equation for the transition probabilities, which
can be interpreted in terms of a jump process. Using standard probability tools, we are then able to compute
explicitly the probabilities for observing the different energy eigenstates and give the exact statistical distri-
bution of the energy of the particleS1063-651X99)04810-7

PACS numbd(s): 05.40—a, 03.65-w

[. INTRODUCTION obtained for time-dependent perturbations of the harmonic
oscillator. Most of them concern periodic driven fofde-6].

This paper is devoted to the study of time-dependent perAlthough the problem is far less understood in the case of
turbations of quantum systems. Literature contains a lot ofandom perturbations, literature contains results about sys-
applications and discussions of special types of perturbaems with randomly time-dependent external driving force.
tions: sudden, adiabatic, periodic . [1]. The considered A general class of quantum systems in Markovian potentials
phenomena are described by the Hamiltonian has been treated in detfil,8]. Under suitable conditions on
the dynamics of the random potential, it is shown in Ref.
that the spectrum of the quasienergy operator is continuous.

where H® is the time-independent piece whose eigenvalueIn Ref. [10] the authors study the long-time stability of os-

problem has been solved, aktt is a small time-dependent glllator§ dlnvent by t|n_1t<:]-depgnde(|;t forces for|g|3at|ng from d
perturbation. The typical question one asks is the following ynamical systems with varying degrees of randomness an

If at t=0 the system is in the eigenstatd of H°, what is focus on the asymptotic energy growth. Recerifly] we
the probability for it to be observed in a given eigenstate?'ave studied the energy density of a charged particle in a
Most results that have been obtained follow a scheme ifl@rmonic oscillator driven by a time-dependent homoge-
which the answers are computed in a perturbation series ii€0us electric field. In this paper we consider a particle in a
powers ofH! [1,2]. We shall present a method for obtaining harmonic oscillator that is driven by an external force, which
answers to the above questions, which is based on the offierives from a weak random time-dependent external poten-
hand on some rigorous asymptotic theory and on the othdial. We aim at studying this problem by a rigorous and non-
hand on a representation of the evolution of the transitiorperturbative method. Our approach is inspired by the works
probabilities in terms of a jump process. In this paper weof Papanicolaou and co-workers about waves in random me-
shall focus on perturbations of the harmonic oscillator, al-dia[12,13. The first step consists in determining the char-
though the method could be applied to more general situaacteristic scales of the problem at hand: oscillation frequency
tions. of the harmonic oscillator, amplitude, coherence time, and
The quantum harmonic oscillator has been extensivelguration of the random perturbations. We then study the
studied, not only because it is a system that can be exactlysymptotic evolution of the state vector in the asymptotic
solved and a great pedagogical tool, but it is also a veryramework based on the separation of these scales. Our main
relevant systeni2]. Indeed a lot of systems close to a stableaim is to exhibit the asymptotic regime, which corresponds
equilibrium can be described by an oscillator or a collectionto the case where the amplitudes of the random fluctuations
of decoupled harmonic oscillators. Furthermore, time-go to zero and the duration of the external perturbation goes
independent and time-dependent modifications of this modeb infinity. We then describe explicitly the effective random
have been investigated, being handled by the perturbatiogvolution of the state vector and the probability transitions.
theory. Indeed, even for this simple model it is exceptional toThe paper is organized as follows. In Sec. Il we review the
find closed-form expressions, except for very particular typesnain features of the harmonic oscillator, while we state our
of perturbationg3]. Nevertheless, rigorous results have beemnmain convergence result about the effective evolution of the
particle in Sec. Ill. By exploiting a representation of the evo-
lution of the energy of the particle in terms of a jump pro-
*FAX: (33) 1 69 33 30 11. cess, we give general results on the long-time behavior of the
Electronic address: garnier@cmapx.polytechnique.fr particle in Sec. IV, which we apply to a couple of examples

H(t)=H°+H(1), )
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in Secs. V-VII. Finally, we compare the theoretical resultsturbed equation, which governs the evolution of the state

with numerical simulations in Sec. VIII. vector, is then
Il. THE HARMONIC OSCILLATOR oy Py
2i —=— — + X2+ eV(t,X) . 8
We consider the quantum oscillator, that is to say, a par- at IxX
ticle of massM whose state vector in the coordinate basis
obeys the Schidinger equation2]: We assume that the amplitudes of the fluctuations are of the

ordere<1. The real-valued functiol is assumed to be a
zero-mean, time-stationary, and time-ergodic process. The
proof actually requires that the random procéssV(t,-)

has “enough decorrelation,” more exactly, that it fulfills the
where o is the oscillation frequency. In order to transform technical mixing conditon ¥ is ¢ mixing, with ¢

this equation into a standard and dimensionless form, we: | YA R+*)” (see[15, Sec. 4-6-B. We shall give more de-
multiply the spatial coordinateby ry *:=(Mw/%)?and the  tail in the following.

oY T S
| E__WW_FEMO)Xd/, (2)

timet by t51:=w, so that Eq{(2) now reads We introduce the normalized process/®(x,t)
) :=y(x,t/£?). We aim at studying the evolution of the state
ia_‘ﬂ: _ ‘9_¢+ 2, 3) vector ¢° of the particle. The initial state vector at tinte
at ax? ’ =0 is ¢y, which corresponds to the decompositiof0)

. ) i . . =0(yy). Since® is an isometry, it is equivalent to study
The spectrgm of the harmonic oscnlatqr is pure point Withine evolution of the expansion @f in the family of eigen-
state energies (@2+1)/2 and corresponding eigenstaf@$  giates {o)pen. ie., the corresponding normalized coeffi-

1 cientsc®:
2
fo(X)= ——==H,(x)e 7", 4 .
P /ZP\/;p! P C;(t):®(dl£(t’.))pel(p+1/2)(t/82), (9
p X2 dP —x2 - i(n' 2
Hp(X):(_l) € We . (5) PE(t,X) = 20 Cg,(t)e_l(p +1/2)(tle )fpr(X). (10)
p =
The family (f,)p<n is complete in the following sendd 4
Prop. 1.5.7. Substituting expressiof10) into Eq.(8) and integrating with
Proposition I1.1.(1) The (f,),.x are an orthonormal and respect tdf ,(x)dx we get the equation that governs the evo-
complete set ir.?(R,C): lution of c®:
’ = ’ dC5 I - t e _in/ 2
| 15008 000x= 5, ©®) G 1y pr,(?)cpm,e P (1
p'=—x

where & stands for the Kronecker’s symbol. ) o )
(2) (t,x)—>e"(PT V2 () is a solution of Eq(3) for any where the coupling coefficients are given by
pelN.
We define the eigenstate decomposition as the @ap
ELz(R,‘C)'%(Cp)peNa wherec, are the coefficients of the Vp,p+pr (D)= pr(x)V(t,x)fp+p/(x)dx. (12
expansion ofy in the basis {;):

We adopt the convention, ,.,,=0 if p+p’<0. In order
O()p:=Cp= f fo(X) (x)dx. (7) to be allowed to apply the diffusion-approximation theorems,
R we have to take care to consider separately the real and

By Proposition 11.1,0 is an isometry fronL%(R,C) ontol2, ~ 'Maginary pagrts of theg coefficients,, ' Denoting X3,
the space of all the sequences),. » from N into C, which ~ *=R€% and X,;:=Imc;, the process<®(t) satisfies the
are squared integrable. In view of the fundamental postulate¥€ar differential equation

of the quantum mechanics, if is the state vector of the

particle, then the measurement of the energy will yield the dXxe(t) EF x# ot
eigenvalue (P+1)/2 with probability|® () ,|%. dt e g2 g?)’
Ill. EVOLUTION DRIVEN BY TIME-DEPENDENT where
FORCES

Suppose that the particle is also subjected to external 1 <
time-dependent forces, which originate from the potentialFZp(X*h’t)‘ZE 2 Vppep (D)
eV(t,x). The dimensionless quantity is a parameter that =
characterizes the amplitude of the perturbation. The per- X[ Xopt2pr+1C0P M) —Xop 4 2p SIN(P’ )],
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1 oo
F2p+1(x’h't)‘=§ 2 Vppip()
p’: —

><[_)(2p+2p’ cogp’h)
_x2p+2p’+l sin(p’h)].

To describe the limit diffusion process we introduce diffu-

sion and drift coefficients:

a; j(X): J(E[F(X,h,O)F(X h+t,t)]),dt,

) at

where(- )y, stands for an averaging over a periochir_et £
be the differential operator:

F(X,h,O)—(X h+t,t)

bj(X):= 2 <

2

X;0X +2 b(X)

L= 2 a;(X) o=

In particular, the diagonal terms of the diffusion maisiare

[

=

2

2
8op,2p* _g E prp+p’(x2p+2p'+X2p+2p’+l)

OOII—‘

E :p,p+p’(x2p+2p'+1X2p—2p’+1

- X2p+ 2p’X2p72p')a

2 2
a2p+1,m+1'—§ /E Fp,p+p’(X2p+2pr+X2p+2pr+1)
p'=-

Q 2 :«p,p+p’(_X2p+2p’+1X2p—2p’+1
r_

+X2p+2p’x2p72p’)v

while the driftb is simply

bzp‘: I‘p,|0+p’x29'

NI
M s

= —o

p

M s

1
4 IpprpXapr1s
p/

b2p+1’=

— oo

where

[ppip= fo ELVp o1 pr (0)Vp p4pr (1) Jcog p't)dt,
(13

Ep,pﬂ), = fo ElVp p+pr (0)Vp p—pr (1) Jcog p't)dt.
(14
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H1: V p,p’, 3M ., such thatV t,|v, . (1)]

<M, p+pr, a@lmost surely,

H2: 3 ¢elL¥ such that the process

t—v_ (t) is ¢ mixing,

H3: a; has a symmetric square root,

[’

H4: V pVn =1, 3 K, such that >, p'"Mp p.p
pl=—=

=K,(1+p)".

Note that conditions H1 and H2 imply that the coefficients
[ppip and E Spptp are well-defined and finite. Further-
more, 'y, . iS non-negative because it is proportional to
the p’-frequency evaluation of the spectral density function
of the time-stationary random process . (.) by the
Wiener-Khintchine theoreril6].

Proposition Ill.1.Under conditions H1-H4, the processes
¢® converge in distribution to the diffusion processdefined
by (1) :=Xop(t) +1X5,11(t), whereXis the diffusion pro-
cess with infinitesimal generatdr.

Proof. Apply formally the (unique theorem of Ref[13].
Conditions H1-H3 seem to be sufficient for applying this
theorem, but we actually deal with an infinite-dimensional
system while only finite-dimensional systems are addressed
in Ref.[13]. That is why supplementary condition H4 should
be fulfilled. It insures that we can approximate b&thandX
by finite-dimensional processes. The complete proof of
Proposition Ill.1 can be found in Refll] in the case
V(t,x):=2xm(t). The technique based on a martingale ap-
proach to some limit theorems in the diffusion-
approximation regime is now well-known and extensively
reviewed in literatur¢12,15. O

We can give explicit sufficient conditions in the case
V(t,x) =3 m () Vi(x), where m,, k=1,... M, are
real-valued zero-mean, independent, stationary and ergodic
processes, and,(x) are deterministic functions. Let us de-
fine the procesg as the unique solution of the following
infinite-dimensional system of linear stochastic differential
equations starting froro(0):

de,= 22 2 Vakp (Vip,p+p Cp+p + Yip.p—pCop-p')

1
Ode,p’,Jt—i_ EKZ::L p,§=:l \/ak'p,

X(Ykp,p+p'Cp+p’~ Ykpp—p Cp—p)°AWi pr 2

. M
|
5 2 V2akovip pCpdWig, (15

where Wy o, Wy, k=1,... M, p'=1,...», andj
=1,2, are independent standard Brownian motiergtands
for the Stratonovich stochastic integral, apd,, , ., is the

We shall assume that the following conditions are fulfilled: coefficient:
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N¢
Yk,p,p+p’' = Jpr(X)Vk(X)prrp’(X)dX- (16) 13
1
andey ' is the real(non-negative by the Wiener-Khintchine €
theorem(16]) givenby i Tpememmes 13
oo , Q""TO""’ q.....'tz..
ey [ HImG@mlcosprdt a7 - t

FIG. 1. Description of the jump proces$ly) in terms of the

Under such conditions, the coefficierits ,, ,» defined by variables £) and (r)
i i)

Eqg. (13) are equal to

M o)
dac, 1
2 p_
Fp,p+p’:k2:1 Yk,p.p+p’ Xk,p’ - dt Ep,gm Fopip(Cprpr=Cp), (21

The general result of Proposition 111.1 can then be rewritterstarting fromC,(0)= %.py:

more explicitly. - Proof. Applying the infinitesimal generatof to |c,|?
Proposition 111.2. Let us assume that for every positive _y2 4 y2 we have

. . - 2p 2p+1»

integern there exists a constakt, such that the coefficients

Yi,p.p+p Satisfy for anyk: dc,

— =E[285p 25(X) + 2855 4 1,2p+ 1(X) +2b2,(X) X5,

o dt
.2 < n
p’gm p 7k,p,p+p' Kn(1+p) g (18) +2b2p+1(X)X2p+1]-

and thatm, is almost surely bounded angl, mixing with  Substituting the corresponding expressionsagf ., - . .
dre LYAR™). into this equation readily yields the result. O

(1) There exists a unique solutianof Eg. (15). System(21) is one of the most important results of the

(2) The processes® converge in distribution to the con- paper. It shows that the probabiliti€, can be computed
tinuous Markov process solution of Eq.(15) ase—0. theoretically from the coupling coefficients, ,.,, and

There exist also technical conditions on the initial condi-that their evolutions are self-consistent in the sense that no
tion c(0) so that the above proposition holds true. Theseother relevant quantities come into play. In particular, the
conditions require that the initial sequen@®0),),.~ de-  relative phases between the coefficients) (of the expan-
cays fast enough and they are fulfilled in particular if thesion of the state vectoy in the basis {,) have no impor-
initial state is a pure eigenstate, i.e(0),= &), for some  tance in the asymptotic evolution of the probability distribu-

po. Thus, in order to avoid unnecessary intricate technicafion (Cp). This statement is not at all obvious, since it is not
developments, we shall assume throughout the paper that ti§gtisfied by original Eq(8) or Eq. (11).
initial state is a pure eigenstate.

The coefficientsE[|cp|2(t)] represent the probabilities IV. INTERPRETATION OF THE LIMIT SYSTEM
that the particle driven by the random potental be ob- IN TERMS OF A JUMP PROCESS
served in the staté, at timet/e? in the asymptotic frame-
work e —0. Equivalently, one can say that the measuremen
of the energy at timeé/s?,

. _1 aY°
E “)—sz( 3

will yield the eigenvalugp+ 1/2 with probability K= %2 Tynep Vors (22)
p!

Cp() =El]cpl(1)].

o where V,,g(N)=g(N+p')—g(N). (N)i=o is a time-
This implies that the expected value of the energy can b@omogeneous jump process defined on a probability space
expressed as (Q,F,P). If at timet the process is in state then the prob-
ability that betweert andt+h the transitionn—n+p’ oc-
curs equald’, ,, ,yh+o0o(h). The probability that more than
one transition occurs ig(h). The operatoV ,, corresponds
to a jump fromnto n+p’. The complete construction of the
Proposition 111.1 is very useful since it allows us to compute process\ is the following[17, Sec. 7, Theorem 33There
efficiently these relevant quantities: exists a sequence of integer-valued random varialgigs(

Proposition 111.3. The family [C(t)],.n satisfies a and positive real-valued variables;); . x such that(see Fig.
closed-form set of ordinary differential equations: 1)

¢ We shall show that the transition probabiliti€g(t) can

be regarded as the statistical distribution of a jump process.
Let N, be the Markov process with state spacé.e., the set

of all non-negative integer numberand infinitesimal gen-
(t,x)dx, (19 erator/C:

2
+X2|¢8|2

L =
E(t)= Eﬂgo pCpy(1). (20)
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_ n-1 n only in the set 1/2 N. At time t one will find the value
Ne=én if 2, m=t<2 7. 1/2+p with probability Po,, (N,=p), which is equal to
1= 1=
Cp(1).

Postulate 3If a measure at timéof the energy gives the
result 1/2+ p, then the state of the system will change from
#(t) to f, as a result of the measurement. Let us assume that
we start from statépo at time 0. If we observe the energy of

the particle at times$; andt,, then the probability for mea-
suring first the energy 1/2p; and then 1/2-p, is equal to

The sequence); . n is a Markov chain with stationary tran-
sition matrix Q:

P(éni1=p+p'1é= p):Qp,p+p’ )

l rpﬂ if p’#0 the probability for observing 1/2p, att, starting fromfpo
Qpp+pri= 2 q(p) multiplied by the probability for observing 1#2p, at t,
0 if p'=0, starting fromf p, alty, because the system is in stag;just

after the measurement &f. This product of probabilities

also reads ap (Ni,=p1) <Py p (Ni,=p;). From the
Markov property of the procedy;, this product is exactly
equal toPo,po(Ntlz P1, N, = p,). Of course, this statement
Given (&);<n ., the random variablesr(); .y are condition-  can be generalized to any sequence of measurements so that
ally independent and exponentially distributed, with param-we conclude that if we observe the energies of the particle at

1
Q(p)zz E 1—‘p,p+p”-
p”#0

eters[q(&j)]jcn, thatis, timest,,..., andt,, then the probability to measure the se-
quence of energies 142p4,...,1/2+p, is exactIyPO,pO(Ntl
P(mj=t)=exd —q(¢t]. =py,....N, =py). This means that the dynamics of the ob-

We denote b the distribution of the path _ servations is Mark_ovian and exactly describgd_by the jump
Pio.0, PAtNN) =1, processN, (Markovian means that the future is independent

starting at timet, with the initial condition Ne,=Po. The from the past conditionally to the presgritlore remarkable,

Markov process has stationary transition probabilities this property is essentially equivalent to Postulate 3 of quan-
tum mechanics. Indeed, if instead of Postulate 3 we assume
Pi(Po.P) =P p (Ny 1 1=p), independent oft’. that the dynamics of the observations is Markovian, then just
after a measurement the system depends only on the result of
Furthermore,P; is the unique probabilistic solutiofi.e., the measurement that means that just after measuring the
2, Pi(p,p+p’)=1] of the Kolmogorov's forward equation energy 1/2-p,, the system must be in a state with energy
[18, Sec. X-3 1/2+ p, with probability 1. Since there exists a unique eigen-

statefpl with energy 1/2p,, this means that the system
aP must be in statefpl with probability 1 (here the nondegen-

t
t (Po:Ps) 4Py Pt(po,pl)+% q(p)Qp,plPt(po,p). eracy of the system plays a primary rplés a conclusion,
(23)  Postulate 3 is exactly the right condition under which we can
extend the statement, N;) describes the statistical distribu-
Since q(p)Qp,p, =z p,p,=20p,.p We get that Eq(23) is  tion of the measurement of the energy at some given time”
equivalent to Eq.(21), which implies the relationC,(t) to the statement, ‘I{;) describes the statistical distribution
=PO,pO(Nt=p). This interpretation of the transition prob- of any sequence of measurements of the energy.”

abilities is very powerful to solve problems and study system Interpretation of the technical conditions Hi in terms of
(21) since it allows us to apply existing results on Markov the jump processin order that the jump process be well-
jump processes, which can be found in the mathematicglefined, it is necessary and sufficient to assume that
literature. 2 o'y N+ pr < for everyN, which means that the first jump
Note that we have only showed tha{ gives the correct starting fromN does not occur instantaneougly; The.require-
statistical distribution of the measurement of the energy ofMentsyp’"I'y n+pr < mean that the statistical distribu-
the particle at a given time In terms of probability theory, tion of the first jump starting fronN has finite moments.
we have only proved that the one-dimensional distributiond=inally, the conditionsX , p""I'y n+pr <K (1+N)" prevent
of (N,) and the ones of the energy distribution coincide. Wethe jump process from going to infinity in finite time.
shall see that in factN,) gives the correct statistical distri-  General long-time behaviot.et us denote by the set of
bution of any sequence of measurements. For that purpodBe accessible states, that is to say:
we revisit the postulates of quantum mechanics in terms of
the jump process|; .
Postulate 1.The state vectors obeys Schrdinger equa- such thatl', , >0}
tion (8). The time evolution of the proces§ is governed by e
the Markovian dynamics described by infinitesimal generatoin probability theoryA is the so-called communicating class,
(22). which contains the initial statp,. The number of elements
Postulate 2.The measurement of the energy(abrmal-  of the set is denoted bj4|. One can divide the possible
ized timet will yield one of the eigenvalues (2+1)/2 with  evolutions of the process\() into two different cases.
probability C,(t). The jump process 12N, takes values Proposition IV.1.If | A|=c, then for everypeN, we

A:={peN,3q a sequencey,....p,=p
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have C,(t)—0 ast—x. If [A|<w, then the probability If a,=0 for n=3, anda, or a; is different from 0 and

distributions(C(t)), . converge as—o: satisfyca,<2a,, then
(1-c)a,\¥*-©
— if ped ( 2 : it a,=0
Cp(t) —— ¢ |4 N
t—oo . tl/(lfc) 1-c¢c Za 1/(1—-c)
0  otherwise. T~ (( 4) 2 7 if a,>0,

Proof. It is a universal feature thalPO,po(Ntzp) con-
verges ag— as soon asN;) is a Markov process with whereZ is a random variable whose distribution has a den-
denumerable state space satisfying the continuity conditiosity with respect to the Lebesgue measure d0er):

PO,pO(Ntz p)—>é3p,pO ast—0" [19], which is the case in our

configuration. What remains is to find the values of the lim-  p_(z)= Lz—lﬂzal—caz) a2 exp( — 2179),
its. The proof is based on elementary tools of Markov pro- 2a;—Cap
cesses theoryl7]. The process is irreducible within the class (1-c)a,

A. It is either recurrent or transient. In the transient case
3,Q"<+o in AX A. From the relation where I' is the so-called Euler's Gamma functidn(r)
:=[gs' "lesds.

Proof. SinceC,(t)— 0 for any fixedp, the long-time be-
havior of N; will depend on the coefficients', ,,,» with
large indices p. Let r be positive real. Sincek[N;]
we deduce thaf ;Cy(t)dt<e and necessaril,(t)—0 as zzzzopfcp(t), we have
t—oo.

In the recurrent casEQ"= + in AX A and there exists dF[N{] 1 & .

a positive measure oved, unique up to a multiplicative at ZEPZO p E Lo prp (Cpip—Cp)
constant, which is invariant with respect@ uQ= w. More P

f:Po,pO(NF p)dt=§n) (QM)pg.p/a(P),

[

8

exactly, from the definition of the matri®Q and coefficients 1 <
a(p): =5 2 (PP Ty p pCpPTppipCp.
p=0 p/=—
,uQ=,u<:>Z Fpiprpm(p+ p’)=2 Lppspu(p). Changingp’ into —p’ in the first term of the double sum,
P’ P’ and using the fact thdt ., ,=T', ;.. We get that
S:;ﬁﬁtre‘agﬁ’;'zr"”"p' we get thatu must satisfy for ev- dE[N!] ) E zoc: i oo .
d'[ - 2p=0 Sl p p p p.p+p’~p
2 Fp+p',p(/~’«(p+p’)_l’«(p)):0- r2a2+r(2a1—az) - e
P - 4 pZO P Co-

Thus the invariant measure is simply the uniform measure

over A. Consequently, if.A| <o, there exists an invariant Choosingr =n(1—c), ne N and integrating, we get that the

probability measuréi.e., with total mass JI which is w(p) moments of the proceststl_C satisfy

=1/|A|, andC,(t) converges tqu(p) by the ergodic theo-

rem for Markov chains. If A| =, then the ergodic theorem

implies thatC(t) converges to 0. O
The second case of the above proposition is a very special

case, which occurs only for very particular conf|gurat|ons.from which we can deduce the result at hand. O

WE.E Shf"‘” see an exa”_‘p'e in Sec. V. The general conﬂguin the following sections we apply the general results derived
ration is indeed the first one, and we can be much mor

. ; §h this paper to some particular and relevant situations.
precise under complementary assumptions. We warn the

reader that the hypotheses of the following proposition may
seem very strange and restrictive, but they are actually ful-

filled in many examples, in particular, in the configurations  Thjs kind of perturbation corresponds to the evolution of

that will be examined in the further sections. a charged particle driven by a randomly time-dependent
Proposition V.2 Let us assume thatd|= and that  g|ectric field. More exactly, let us assume that the particle

there existc<1 such that for every positive integar the possesses a charge Suppose that we apply an external,

. (NPH H j<1—c>2a2+<1—c><2a1—a2)’
t—o j:]- 4

V. A LINEAR PERTURBATION

following limits exist: homogeneous, and time-dependent electric figtd(t). The
o dimensionless functiom describes the time fluctuations of
S pr ) the field. This corresponds to an electrostatic potential
e P.p+p Exm(t) and a potential energy-q&oxm(t). The dimen-
— a,. sionless quantitye is a parameter, which characterizes the

p poe amplitudes of the fluctuations and is defined by
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a&o
= R T2,

This situation is a particular case of the general framework
discussed in Sec. Il with/(t,x)=2xm(t). In such condi-
tions, I'p pypr = y;mp,ar’), wherea,, is given by Eq.(17)

and

E(t)

2(p+1) if p'=1

2 H r_
Vopsp = 2p if p'=-1 .
0 otherwise.

FIG. 2. Expected energ¥(t) of the particle under time-
Note thatS,,,p'T ,=2 and3, ,pfzr ,=4p+2. By dependent perturbations with spatial Gaussian shape in the narrow-
p p.p+p p p.p+p T e i
applying Proposition 1V.2 withc=0, a,=2a,, and a, band case withw,=1/(127). The particle is assumed to be tat

_ =0 in the state 0, 2, or 4. Remember that all quantities are dimen-
=4a,, we get thalN,/(a;t) converges as—« to a random . . . ,

. . . . . . sionless by the transformations explained in Sec. Il.
variable with exponential density and mean 1, which reads in

terms of the family of probabilitiebCp(t) ]~ as

- 20[2
1 p E p,rp,p+p’:2a2( 7,2),p+2_ ’)’;Za,p—z) = - _'n'pz'
Cp(t) =— -—. (24) pl=—w p>1
t>lalt 011'[
402

Besides, in this particular case, we are able to solve explicitly > Py =4ay( Yoprot Vop-2) =
homogeneous linear systd2il) with any initial condition. If pr=—c p>1
the initial state isfpo, then the distributiorC, is for every

p’

) Applying Proposition V.2 withc=—-2,a;=—2a,/, and
time t [11, Prop. 4.3 a,=4a,/m, we get that the jump procesk associated with
this configuration satisfies

Po +2i-
Po! p! (agt)PTePo
Cy(t)= — . ,
otV j:zpm(po—J)!ZJ!(p—poﬂ)! (1+ayt)PrPors N

t_l/3 t—>—oc) ZyeZne,

wherep,,:=max{P—py,0). We can then check that these ex-

pressions are consistent with long-time behav®¥). Fur-  where z,.:=(9a, /)3 and Z,. is the positive-real-valued

thermore, the energy growth is linear: random variable whose distribution is characterized by the
E(t)=E(0)+ ayt, probability density

3 3

which was first established in RgfL0]. Pre(2)= me‘z ,

VI. A GAUSSIAN PERTURBATION whereT'(1/3)=2.679. Computingi[ Z,.]=v3T (2/3)%/(2)

We consider in this section the case of a spatially Gauss=0.505, the expected energy growst&s for larget:
ian potential V(t,x)=m(t)exp—x?. Then T .
— 2 p ’ WheEe ) B ( ) p( b )E (17) dp".)l:+p E(t) = chE[ch]t1/3a
Yoptp Xp @y is given by Eq. and, from -1
tabulated formula$20, formula 7.374.2 we get
and the histograriC,(t) ], ~ is asymptotically

5 (2p+2p1_1)!2274p74p'+1

Tppr2p' pl(p+p —1)1%(p+2p")! C —m 8p 2
2 2p(t)t;lr(ll:g)znctl36)( ) (29
yp,p+2p’+1:0'

The resolution of Eq(21) by a standard numerical routine
Since expx?) is an even function, odd transitions corre- (see Fig. 2 confirms thet'* long-time behavior of the ex-
sponding to”i o+ 2p 11 @r€ forbidden. As a consequence, if pected energy, but it also reveals that the short-time behavior
the initial state is an eveftespectively, oddeigenstate, then ©Of the expected energy strongly depends on the initial state.
only even (respectively, odd eigenstates can be observed. If the initial state is a low-order eigenstate, then the energy

We shall assume in what follows that the initial state is eveni'St grows quite rapidly to reach the asymptattc’ rate. If
the initial state is a high-order eigenstate, then the energy

first decreases, so that the long-time curves corresponding to
the different initial states are quite close to each other.

We assume in this section that the power spectrum of the This dynamics is made more transparent when analyzing
perturbationm has compact support so that>0 and «; the evolutions of the probability distributiof€ (t) |, of the
=0 for j=4. After some algebra one can establish that  energy. In Figs. 3-5 one can observe the different steps of

A. Narrow-band coupling
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0.6 T T T T T T T T T T T LELELELEN LR DL AL AL BLELEL AL DL BLELEL L B AL AL UL
k. — ic | ] —— asymptotic
Y U . ;lscmp(:onc; ---------- mode 0
== mode 2 b 0.1 «---<+ mode 2 E
eeeeee mode 4 1 e~ moded
) 5 E
I ] u
:‘5; ; = 005 4
« E
NNNNN . [ P A I IR T B, 1
= ‘;0 = 0 5 10 15 20 25 30 35 40

FIG. 5. The same as in Fig. 3, buttat 10°. All histograms are

FIG. 3. Theoretical histograms of the probability distributions
! siog P ity QLS identical and coincide with asymptotic formu(25).

[Cp(t) ], Of the state of the particle under time-dependent pertur
bations with spatial Gaussian shape in the narrow-band case with

a,=1/(127). The particle is assumed to betat0 in the state 0, 2, v_ve /get\/ﬁby apglyln_g r\;gpoiltlonh I\./'Z witle=—1/2, a,
or 4. Heret=10%. Only even states have positive probabilities. The ~, ¢ (4Vm), anda,=a/m, that the jump proces; asso-

solid line corresponds to approximate form(®b). It is clear that ciated with this configuration satisfies
the histograms have still the memory of the initial state. N
t

o . . —m—— ZpLpes
the reorganizations of the probability distributioqs, for 23 oo bebe
different initial conditions. It appears that if the initial state is
a low-order eigenstafe.e., C,(0)= 8y, for smallpo], then  where z,¢:=[9a/(16y7)]?® and Z, is the positive-real-
the short-time dynamics consists in filling high-order prob-valued random variable whose distribution is characterized
abilities in order to get asymptotic shaf®5). Conversely, if by the probability density
the initial state is a high-order eigenst&@,(0)= 6p'p0 for

large pg], then the short-time dynamics consists in filling the Poc(2) = me‘zw,
low-order probabilities in order to get the asymptotic shape. (2/3)
That is why the expected energy either grows or decreases,jfhere I'(2/3)=1.354. Computing F[Zp]

the initial state is either low or high order. Furthermore, the_ 2\/377/[91“(2/3)]220.659, the expected energy grows as
convergence to an asymptotic shape whatever the initial statess ¢q, long t:
guarantees that the expected energy will have a long-time
behavior independent of the initial condition. E(t) = zp [ Z,t23,
t>1

B. Broadband coupling and the histograriC,(t) ],  is asymptotically

We assume here that the power spectrum of the perturba-

. ; . 312
tion mis flat so thata, =« for everyp’. Since Cop(t) = ex;{ ~(2p) ) 26
B 20t T(23)z,t2R %)
(434
! ~
p,:E% p rp,p+p’p;14\/;\/5' F_igure _6 plots the proba!bili_ty distribytior[i:p(t)]pe-_\ at a
given time for different initial conditions. Comparing with
% Figs. 3-5, it clearly appears that the coupling mechanisms,
a\p . .
> p’zl“p pipr = ——=, which tend to strengthen the probabilities corresponding to
p'=—w» p=>1 VT
0151 ' T ]
— +~—— asymptotic | |
..... —— asympotic | ] P oo mode )
............ mode 0 1 e o $gg§i
02—~ : »=---+ mode 2 1 o1l i
.. -— -~ N 0 = mode 4 _- § r
) I
i 3 0
5, ol ] 005 - -
0- 1
[ L ey . 0 40 50
00 5 10 15 20 P

FIG. 6. Theoretical histograms of the probability distributions

FIG. 4. The same as in Fig. 3, but & 10*. The histograms [Cp(t)]pen of the state of the particle under time-dependent pertur-
corresponding to the cases where the initial state is the fundamenthhtions with spatial Gaussian shape in the broadband casexwith
or the second mode are identical and coincide with asymptotic for=1/(127). The particle is assumed to betat0 in the statd, f,,
mula (25), while the histogram corresponding to the initial sthte or f,. Heret=100. Only even states have positive probabilities.
is still different. The solid line corresponds to approximate form(2).
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the high-order eigenstates, are quicker than in the narrow- L
band case. Indeed, the flat power spectrum of process
makes possible long-range jumps of the prodésswhile a

narrow-band spectrum only authorizes jumps to the nearest .16 7
neighbors. That is why the energy grows much quicker Lok ]
(~1?"?) in the broadband case than in the narrow-band case o2 ]
(~tY3). In the general case, that is to say whatever the spec- L ]
trum of the perturbation, the energy grows at a rate between 004} E

the above regimes, i.e., betwegff andt??.

o S0 300
VIl. A SPATIALLY PERIODIC PERTURBATION P

We consider in this section the case of a spatially periodic FIdG 7. COU_PT”Q. Eoeﬁifiiz@l’ﬁ,pu for evenp for fli Spﬁltiallz
ntial V(t.x) = m 9. ThenT — o periodic potential with period~*=1. Note in particular that the
potentia .(t’ .) (t)cosex). The P’ ™ Yppep ®pr gt indices, which correspond to very small values, apg=212
wherea, is given by Eq(17) and, using tabulated formulas and 2p,=34
[20, formula 7.388.J 2o

b2\ 20’ ! b2\ 2 positive, thenp,;=0. If all coefficients with indices larger
72 = <_> —',eb2/2|_2p’(_> , thanp, are positive, them,=c. Then no transition towards
pprzet 1 2] (p+2p’)! P2 eigenstates of indices larger thap,2and smaller than g, is
5 possible. Applying Proposition 1V.1 yields that the family
Yopt2pr+1=0s Cp(t) converges as—x to

where thel|' are the Laguerre polynomials defined by
[20, formula 8.970

if pptlsp=p
Cop(®)=4 Pa=P1 ?
1 d" 0 if p>p, or psp;.
an(x)::n—lexx*mw(efxxmm). P=P2 OF P=P1
' In terms of the expected ener@(t) = 1/2+ 2 ,pCy(t), this
For large p and evenp’ smaller thanp, we have corresponds to the asymptotic value

[20, formula 8.978.B

1 b2p -1/2
2
Vp,p+p’z;(7) cog

o
V2pb®— Z) : (27) If there exists no vanishing coupling coefficients, there exists
nevertheless coefficients whose values are very close to zero
We shall assume that the initial state is an eigenstate agis shown by Eq(27). The transitions through such indices
even indexp,. Only the probabilities corresponding to even are very slow and will actually be the ones that will impose
eigenstates are weighted by the effective evolution, as showthie evolution rate of the probabilitie<().

by the fact thaty, ,,, is zero if p’ is odd. This is, of Figure 8 plots the expected energy for different initial
course, also readable on the spatial form of the perturbatiorgonditions. It appears that the behavior of the energy de-
which is the even function cosine. pends on the initial statépo. The mechanism behind this
statement can be made more transparent when regarding the
A. Narrow-band coupling evolutions of the probability distributionsC(): Figure 9

Huts into evidence that the histograms strongly depend on the
Initial state. To understand the picture it is necessary to re-
member from Fig. 7 that there exists two indices, namely,

In order to have a clear and simple presentation, we shal
first assume that the processhas a power spectral density
with compact support and that ondy, is different from 0, so
that the set of evolution equations reduces as

st E

dczp Ay 2 e T EEEEEEEEEEEE Tmmmmmmmmm—]

dt = ?[sz,zmz(czmz_ C2p) 20 j—"/"/”' — ]

S [ =4 ]

= 15 | e-ee- =8 J

+¥5p-220(Cop-2—Cap)]. (28) = F e hoo12 ]

100 v 3

The structure of the coupling coefficien;t%p+2 is shown on N i :

Fig. 7. As demonstrated also by formiv) the coefficients 5 E/)k E

get almost zero at some indicep22p,, ... . Evolution N S

(28) strongly depends on the coefficients, which are zero or 0 500 1000 1500 2000 2500

very close to 0. Let us assume first that there exists an even t

index such thaty, ,+,=0 and denote by 2, (respectively, FIG. 8. Expected energf(t) of the particle under time-

2p,) the largest(respectively, smallestindex smaller(re-  dependent perturbations with spatially periodic shape 1) in the
spectively, larger than py, which satisfies this vanishing narrow-band casen=1). The particle is assumed to betat0 in
condition. If all coefficients with indices smaller thgg are  the statefy,f,,fg, ..., orfy.
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FIG. 9. Theoretical histograms of the probability distributions ~ FIG. 11. The same as in Fig. 10, but the time evolution of the
[Cp(t)]pen Of the state of the particle under time-dependent pertur-expected energi(t) is plotted for long times.
bations with spatially periodic shapd£1) in the narrow-band
case @,=1). The particle is assumed to betat0 in the statef, a small leakage throughp2 towards eigenstates of indices
fq, fg, ..., orfyy. Heret=25x1C%. larger than ®, and so on.

2p,=12 and %,= 34, which correspond to very small val- B. Broadband coupling
ues of the coupling coefficientﬁpvzp”. Consequently, if
Po=2p;, then the histograms first tend to a uniform distri-

bution over[0,2p, ], but for times longer than a few hun- 5, expect that such a broadband coupling allows jumps with
dreds there is also some leakage to the second [@B2 5 range larger than 2 and makes it possible to bypass the
+2,2p,] (see Fig. 10 In terms of the expected energy, this igficuit points exhibited here above. This argument is par-

implies thatE(t) =p,+1/2=6.5 for times of the order of a .. - -
few hundreds. Nevertheless, due to the slight leakage ttlally true. Indeed, Fig. 12 plots the coefﬂmeny% prpr 89

wards high-order states, the energy then grows beyond th émCtIOHS of P fqr different p’. It clearly shows that. al
value at a slow rate. If @, +2<p,=2p,, then the histo- o o> have similar shapes, but the slow points are shifted by

grams first tend to a uniform distribution ovdr2p, aqqan_tity, which erends @', Unfortunately, for large
+2,2p,], but there is also some leakage to the first areai)hne |pd;;e;:‘g\:vzvglc?g%a%z%eLveirhlssgsaslllvl%% ?r?érieszggs
[0,2p,] for times of the order of a few hundreds. One can Ip T yh I .d bandwidth h tha:
also notice that there is almost no leakage towapds a large Integeps, the so-called bandwidth, such thaj,

— 1 ! 1 +1
e ana s S e 1 et e v, [P0 00 0 o sen condtors e
Yap,2p,+2=9-2X10"° is much closer to 0 tham,p 2, 2 9 v P

i 2
~2°0x10°2. In terms of the expected energy, this impliesth? valueg of the coefﬂmentﬁp’wp, are very small for all
thatE(1)=p, + P+ 312=24.5 for times of the order of afew [P |=Pe- ' 1€, 3eree at they ave much smaller than the
hundreds. For longer times, due to the leakage towards th |(F:)ecsa tﬁgigeffic;nt € )éa?] beua réxinc;atgdgg E
eigenstates of indices smaller thap,2 the energy decreases P, ) Fp.ptp’ Ppro: Y EQ.
below the value 24.5 at a slow rate. Finally, note in Fig. 11(27)’ S0 thqt It appears that the .SlOW points are grouped
that for very long timegof the order 18), the small leakages er%ugi F;ertlszu;agsp?ggﬁ; :Qa:a?re;;rr:gfé(ve(gt?% (a:(n_lg;[‘el)gzkr
through 2, lead to a uniform distribution of the probabili- More ezactl arouncp thg coE ling coefficients can. be
ties C,, over[0,2p,] for all initial configurationsfpo with Y ko ping

‘ ) estimated by
Po=2p,. If one waits even longer, one will be able to detect

Let us now analyze the case of a broadband perturbation,
which has a large number of positive coefficients, . We

12

bp

2 !’
[T e ] sup Vpk+qo,pk+q1~ﬁwp3/z for p’<py.
— = —p 2
.......... t=125 |4 dl.lasl<p
----- =250
------ t=500
————— t=2500

Co(®

20 25 30 35 40
)

FIG. 10. Theoretical histograms of the probability distributions
[Cp(t)]pen Of the state of the particle under time-dependent pertur-
bations with spatially periodic shapd£1) in the narrow-band
case @,=1). The particle is assumed to betat0 in the funda- FIG. 12. Coupling coeﬁicients/f) 4 for evenp andp’ for a
mental state O. spatially periodic potential with period *=1.
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0 500 1000 1500 0 500 1000 1500

FIG. 13. Evolution of the energy of the particle computed by  FIG. 14. The same as in Fig. 13, but the initial state vector is the
simulation of perturbed Schdinger equatiort8) and averaged over second modé,.
200 realizations and in comparison with the theoretical formulas
given by Egs.(21) and (20). The initial state vector is the funda-

_ ’
mental statef. o 1 1-cogp'te)
p/

12 p,

Consequently, ifp< pg, then there existp’ <ps such that

y;mp,fvp*m, which means that the broadband coupling isand ag=1t./24. The quantityMt., which is equal to the time
sufficient for eliminating the slow points. But, fqr> pg, duration of the perturbation, will be chosen so large that we
there are intervals arounrjk of |ength |arger than Bs, can observe the effect of the small perturba&M} We mea-

which consist of successive states that are slow points; theure theL? norm and energy19) of the particle that we can
jump process cannot avoid the slow points anymore; the cocompare with the corresponding data of the incident state
responding coupling coefficients have small values andector. We present results corresponding to simulations
S“Qp’lSpJﬁ,mp' is of the ordem2p~32<p~Y2 Therefore, Where the initial state a=0 is the fundamental Gaussian

there are always slow points, whatever the spectrum of th odefo(x) or the second mode,(x). We have first simu-

random procesm, and the discussion we have presented inated the homogeneous Sctimger equatior(with V=0),

H H H —it/2
the narrow-band case still holds true qualitatively. which _5}92”‘“3 as an exact solutiorfo(x)e and
fo(x)e , respectively. We can, therefore, check the ac-

curacy of the numerical method, since we can see that the
VIIl. NUMERICAL SIMULATIONS modulus of the computed solution maintains a very close

The results in the previous sections are theoretically Va"desemblance to the initial fieldiata not shown while theL

in the limit casee—0, where the amplitudérespectively, ?orm and the_ edner%y iLede_lflfmosttcon?tar:_t. Thef(z:]her S|;nula-
duration of the perturbations goes to zef@spectively, in- lons are carried out with diiterent realizations of the random

finity). In this section we aim at showing that the asymptoticP"c€SSm with e=1.In Figs. 13 and 14 we present the
behaviors of the state vector can be easily observed in mf—'mUIatEd evqlutl_ons of the energy of the partlcle averaged
ver 200 realizations and compare them with the mean the-

merical simulations in the case where the perturbation Ve ; ; . 2
small, so that its effect appears after a long time. We use gretical evolutions given by Eq2D) in the scald/e”. It thus

split-step method to simulate the one-dimensional perturbe@PP€ars that the numerical simulations are in very good
linear Schidinger equation8), and more exactly a fourth- agreement with the theoretical results. All these observations

order variant[21], so that we obtain a reliable numerical gonfirm that systen21) describes with accuracy the evolu-

algorithm, which provides accurate solutions even for a |On§f|on of the harmonic oscillator under small perturbations and

computational time domain. We adopt in this section the'©Ng times.
following model for the perturbation:
IX. CONCLUSION
V(t,x)=m(t)exp —x?),
We have analyzed in this paper the effects of very general
t types of random perturbations on the evolution of a quantum
m(t)=u, if I+ag=< t_<| +ag+1, particle. The precise results we have got are limited to the
¢ quantum harmonic oscillator. For such a system the eigen-
) ] values and eigenstates are explicit and tabulated formulas are
where (u));-o,... m-1 is @ sequence dfl-independent and  5yajlable, so that we are able to perform exact calculations
identically distributed variables, which obey uniform distri- 51 compute closed-form expressions for the eigenstates
butions over the intervel —1/2,1/2, anda, is a random  propabilities. Nevertheless, the results demonstrated in this
variable independent af, which also obeys an uniform dis- paper can be generalized to a large class of systems. Indeed,
tribution over[ —1/2,1/2. t. is the so-called coherence time the hasic assumption, which requires the existence of a com-
of the random process. The autocorrelation function of the plete set of normal eigenstates for the unperturbed Hamil-
ergodic processm is equal to E[m(0)m()]=%:(1  tonian, holds true for most of them. The only—but
—t/to)li<,, so that the power spectral density defined by Eqimportant—restriction to insure that our results can be ap-
a7 is plied is the nondegeneracy of the energy levels. The remain-
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der of the study then consists in technical developments tabove techniques with some more work, although it will in-
exhibit and analyze the coupling mechanisms between theolve a mechanism more complicated than the jump process
eigenstates. Furthermore, we feel that the problem correexhibited in this paper. This will be the subject of a further
sponding to a degenerate system could be addressed with therk.
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