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Energy distribution of the quantum harmonic oscillator
under random time-dependent perturbations

J. Garnier*
Centre de Mathe´matiques Applique´es, Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 7641, Ecole Polytechniqu

91128 Palaiseau Cedex, France
~Received 11 December 1998!

This paper investigates the evolution of a quantum particle in a harmonic oscillator driven by time-
dependent forces. The perturbations are small, but they act long enough so that we can solve the problem in the
asymptotic framework corresponding to a perturbation amplitude that tends to zero and a perturbation duration
that tends to infinity. We describe the effective evolution equation of the state vector, which reads as a
stochastic partial differential equation. We exhibit a closed-form equation for the transition probabilities, which
can be interpreted in terms of a jump process. Using standard probability tools, we are then able to compute
explicitly the probabilities for observing the different energy eigenstates and give the exact statistical distri-
bution of the energy of the particle.@S1063-651X~99!04810-2#

PACS number~s!: 05.40.2a, 03.65.2w
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I. INTRODUCTION

This paper is devoted to the study of time-dependent p
turbations of quantum systems. Literature contains a lo
applications and discussions of special types of pertu
tions: sudden, adiabatic, periodic, . . . @1#. The considered
phenomena are described by the Hamiltonian

H~ t !5H01H1~ t !, ~1!

where H0 is the time-independent piece whose eigenva
problem has been solved, andH1 is a small time-dependen
perturbation. The typical question one asks is the followi
If at t50 the system is in the eigenstatec0 of H0, what is
the probability for it to be observed in a given eigensta
Most results that have been obtained follow a scheme
which the answers are computed in a perturbation serie
powers ofH1 @1,2#. We shall present a method for obtainin
answers to the above questions, which is based on the
hand on some rigorous asymptotic theory and on the o
hand on a representation of the evolution of the transit
probabilities in terms of a jump process. In this paper
shall focus on perturbations of the harmonic oscillator,
though the method could be applied to more general si
tions.

The quantum harmonic oscillator has been extensiv
studied, not only because it is a system that can be exa
solved and a great pedagogical tool, but it is also a v
relevant system@2#. Indeed a lot of systems close to a stab
equilibrium can be described by an oscillator or a collect
of decoupled harmonic oscillators. Furthermore, tim
independent and time-dependent modifications of this mo
have been investigated, being handled by the perturba
theory. Indeed, even for this simple model it is exceptiona
find closed-form expressions, except for very particular ty
of perturbations@3#. Nevertheless, rigorous results have be
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obtained for time-dependent perturbations of the harmo
oscillator. Most of them concern periodic driven force@4–6#.
Although the problem is far less understood in the case
random perturbations, literature contains results about
tems with randomly time-dependent external driving forc
A general class of quantum systems in Markovian potent
has been treated in detail@7,8#. Under suitable conditions on
the dynamics of the random potential, it is shown in Ref.@9#
that the spectrum of the quasienergy operator is continu
In Ref. @10# the authors study the long-time stability of o
cillators driven by time-dependent forces originating fro
dynamical systems with varying degrees of randomness
focus on the asymptotic energy growth. Recently@11# we
have studied the energy density of a charged particle i
harmonic oscillator driven by a time-dependent homo
neous electric field. In this paper we consider a particle i
harmonic oscillator that is driven by an external force, whi
derives from a weak random time-dependent external po
tial. We aim at studying this problem by a rigorous and no
perturbative method. Our approach is inspired by the wo
of Papanicolaou and co-workers about waves in random
dia @12,13#. The first step consists in determining the cha
acteristic scales of the problem at hand: oscillation freque
of the harmonic oscillator, amplitude, coherence time, a
duration of the random perturbations. We then study
asymptotic evolution of the state vector in the asympto
framework based on the separation of these scales. Our m
aim is to exhibit the asymptotic regime, which correspon
to the case where the amplitudes of the random fluctuat
go to zero and the duration of the external perturbation g
to infinity. We then describe explicitly the effective rando
evolution of the state vector and the probability transitio
The paper is organized as follows. In Sec. II we review
main features of the harmonic oscillator, while we state o
main convergence result about the effective evolution of
particle in Sec. III. By exploiting a representation of the ev
lution of the energy of the particle in terms of a jump pr
cess, we give general results on the long-time behavior of
particle in Sec. IV, which we apply to a couple of exampl
3676 © 1999 The American Physical Society
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in Secs. V–VII. Finally, we compare the theoretical resu
with numerical simulations in Sec. VIII.

II. THE HARMONIC OSCILLATOR

We consider the quantum oscillator, that is to say, a p
ticle of massM whose state vector in the coordinate ba
obeys the Schro¨dinger equation@2#:

i\
]c

]t
52

\2

2M

]2c

]x2 1
1

2
Mv2x2c, ~2!

wherev is the oscillation frequency. In order to transfor
this equation into a standard and dimensionless form,
multiply the spatial coordinatex by r 0

21
ª(Mv/\)1/2 and the

time t by t0
21

ªv, so that Eq.~2! now reads

2i
]c

]t
52

]2c

]x2 1x2c. ~3!

The spectrum of the harmonic oscillator is pure point w
state energies (2p11)/2 and corresponding eigenstates@2#

f p~x!5
1

A2pApp!
Hp~x!e2x2/2, ~4!

Hp~x!5~21!pex2 dp

dxp e2x2
. ~5!

The family (f p)pPN is complete in the following sense@14
Prop. 1.5.7#.

Proposition II.1.~1! The (f p)pPN are an orthonormal and
complete set inL2(R,C):

E
R

f p~x! f p8~x!dx5dp,p8 , ~6!

whered stands for the Kronecker’s symbol.
~2! (t,x)°e2 i (p11/2)t f p(x) is a solution of Eq.~3! for any

pPN.
We define the eigenstate decomposition as the mapQ:c

PL2(R,C)°(cp)pPN , wherecp are the coefficients of the
expansion ofc in the basis (f p):

Q~c!pªcp5E
R

f p~x!c~x!dx. ~7!

By Proposition II.1,Q is an isometry fromL2(R,C) onto l 2,
the space of all the sequences (cp)pPN from N into C, which
are squared integrable. In view of the fundamental postul
of the quantum mechanics, ifc is the state vector of the
particle, then the measurement of the energy will yield
eigenvalue (2p11)/2 with probabilityuQ(c)pu2.

III. EVOLUTION DRIVEN BY TIME-DEPENDENT
FORCES

Suppose that the particle is also subjected to exte
time-dependent forces, which originate from the poten
«V(t,x). The dimensionless quantity« is a parameter tha
characterizes the amplitude of the perturbation. The p
s

r-
s

e

es

e

al
l

r-

turbed equation, which governs the evolution of the st
vector, is then

2i
]c

]t
52

]2c

]x2 1x2c1«V~ t,x!c. ~8!

We assume that the amplitudes of the fluctuations are of
order «!1. The real-valued functionV is assumed to be a
zero-mean, time-stationary, and time-ergodic process.
proof actually requires that the random processt°V(t,•)
has ‘‘enough decorrelation,’’ more exactly, that it fulfills th
technical mixing condition ‘‘V is f mixing, with f
PL1/2(R1)’’ ~see@15, Sec. 4-6-2#!. We shall give more de-
tail in the following.

We introduce the normalized processc«(x,t)
ªc(x,t/«2). We aim at studying the evolution of the sta
vector c« of the particle. The initial state vector at timet
50 is c0 , which corresponds to the decompositionc(0)
5Q(c0). SinceQ is an isometry, it is equivalent to stud
the evolution of the expansion ofc« in the family of eigen-
states (f p)pPN , i.e., the corresponding normalized coef
cientsc«:

cp
«~ t !5Q„c«~ t,• !…p

ei~p11/2!~ t/«2!, ~9!

c«~ t,x!5 (
p850

`

cp8
«

~ t !e2 i ~p811/2!~ t/«2! f p8~x!. ~10!

Substituting expression~10! into Eq.~8! and integrating with
respect tof p(x)dx we get the equation that governs the ev
lution of c«:

dcp
«

dt
52

i

2« (
p852`

`

vp,p1p8S t

«2D cp1p8
« e2 ip8t/«2

, ~11!

where the coupling coefficients are given by

vp,p1p8~ t !ªE
R

f p~x!V~ t,x! f p1p8~x!dx. ~12!

We adopt the conventionvp,p1p8[0 if p1p8,0. In order
to be allowed to apply the diffusion-approximation theorem
we have to take care to consider separately the real
imaginary parts of the coefficientscp

« . Denoting X2p
«

ªRecp
« and X2p11

«
ªIm cp

« , the processX«(t) satisfies the
linear differential equation

dX«~ t !

dt
5

1

«
FS X«,

t

«2 ,
t

«2D ,

where

F2p~X,h,t !ª
1

2 (
p852`

`

vp,p1p8~ t !

3@X2p12p811 cos~p8h!2X2p12p8 sin~p8h!#,
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F2p11~X,h,t !ª
1

2 (
p852`

`

vp,p1p8~ t !

3@2X2p12p8 cos~p8h!

2X2p12p811 sin~p8h!#.

To describe the limit diffusion process we introduce diff
sion and drift coefficients:

ai , j~X!ªE
0

`

^E@Fi~X,h,0!F j~X,h1t,t !#&hdt,

bj~X!ªE
0

`

(
i 50

` K EFFi~X,h,0!
]F j

]xi
~X,h1t,t !G L

h

dt,

where^•&h stands for an averaging over a period inh. Let L
be the differential operator:

Lª (
i , j 50

`

ai j ~X!
]2

]Xi]Xj
1(

j 50

`

bj~X!
]

]Xj
.

In particular, the diagonal terms of the diffusion matrixa are

a2p,2pª
1

8 (
p852`

`

Gp,p1p8~X2p12p8
2

1X2p12p811
2

!

1
1

8 (
p852`

`

Jp,p1p8~X2p12p811X2p22p811

2X2p12p8X2p22p8!,

a2p11,2p11ª
1

8 (
p852`

`

Gp,p1p8~X2p12p8
2

1X2p12p811
2

!

1
1

8 (
p852`

`

Jp,p1p8~2X2p12p811X2p22p811

1X2p12p8X2p22p8!,

while the drift b is simply

b2pª2
1

4 (
p852`

`

Gp,p1p8X2p ,

b2p11ª2
1

4 (
p852`

`

Gp,p1p8X2p11 ,

where

Gp,p1p8ªE
0

`

E†vp,p1p8~0!vp,p1p8~ t !‡cos~p8t !dt,

~13!

Jp,p1p8ªE
0

`

E†vp,p1p8~0!vp,p2p8~ t !‡cos~p8t !dt.

~14!

We shall assume that the following conditions are fulfille
H1: ; p,p8, 'M p,p1p8 such that ; t,uvp,p1p8~ t !u

<M p,p1p8 , almost surely,

H2: ' fPL1/2 such that the process

t°v .,.~ t ! is f mixing,

H3: ai j has a symmetric square root,

H4: ; p,;n >1, ' Kn such that (
p852`

`

p8nM p,p1p8

<Kn~11p!n.

Note that conditions H1 and H2 imply that the coefficien
Gp,p1p8 and Jp,p1p8 are well-defined and finite. Further
more,Gp,p1p8 is non-negative because it is proportional
the p8-frequency evaluation of the spectral density functi
of the time-stationary random processvp,p1p8(.) by the
Wiener-Khintchine theorem@16#.

Proposition III.1.Under conditions H1–H4, the process
c« converge in distribution to the diffusion processc defined
by cp(t)ªX2p(t)1 iX2p11(t), whereX is the diffusion pro-
cess with infinitesimal generatorL.

Proof. Apply formally the~unique! theorem of Ref.@13#.
Conditions H1–H3 seem to be sufficient for applying th
theorem, but we actually deal with an infinite-dimension
system while only finite-dimensional systems are addres
in Ref. @13#. That is why supplementary condition H4 shou
be fulfilled. It insures that we can approximate bothX« andX
by finite-dimensional processes. The complete proof
Proposition III.1 can be found in Ref.@11# in the case
V(t,x)ª2xm(t). The technique based on a martingale a
proach to some limit theorems in the diffusion
approximation regime is now well-known and extensive
reviewed in literature@12,15#. h

We can give explicit sufficient conditions in the ca
V(t,x)5(k51

M mk(t)Vk(x), where mk , k51, . . . ,M , are
real-valued zero-mean, independent, stationary and erg
processes, andVk(x) are deterministic functions. Let us de
fine the processc as the unique solution of the following
infinite-dimensional system of linear stochastic different
equations starting fromc(0):

dcp5
i

2 (
k51

M

(
p851

`

Aak,p8~gk,p,p1p8cp1p81gk,p,p2p8cp2p8!

+dWk,p8,1t
1

1

2 (
k51

M

(
p851

`

Aak,p8

3~gk,p,p1p8cp1p82gk,p,p2p8cp2p8!+dWk,p8,2t

1
i

2 (
k51

M

A2ak,0gk,p,pcp+dWk,0t
, ~15!

where Wk,0 , Wk,p8, j , k51, . . . ,M , p851, . . . ,̀ , and j
51,2, are independent standard Brownian motions,+ stands
for the Stratonovich stochastic integral, andgk,p,p1p8 is the
coefficient:
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gk,p,p1p8ªE
R

f p~x!Vk~x! f p1p8~x!dx, ~16!

andak,p8 is the real~non-negative by the Wiener-Khintchin
theorem@16#! given by

ak,p85E
0

`

E@mk~0!mk~ t !#cos~p8t !dt. ~17!

Under such conditions, the coefficientsGp,p1p8 defined by
Eq. ~13! are equal to

Gp,p1p85 (
k51

M

gk,p,p1p8
2 ak,p8 .

The general result of Proposition III.1 can then be rewrit
more explicitly.

Proposition III.2. Let us assume that for every positiv
integern there exists a constantKn such that the coefficient
gk,p,p1p8 satisfy for anyk:

(
p852`

`

p8ngk,p,p1p8
2 <Kn~11p!n, ~18!

and thatmk is almost surely bounded andfk mixing with
fkPL1/2(R1).

~1! There exists a unique solutionc of Eq. ~15!.
~2! The processesc« converge in distribution to the con

tinuous Markov processc solution of Eq.~15! as«→0.
There exist also technical conditions on the initial con

tion c(0) so that the above proposition holds true. The
conditions require that the initial sequence„c(0)p…pPN de-
cays fast enough and they are fulfilled in particular if t
initial state is a pure eigenstate, i.e.,c(0)p5dp,p0

for some

p0 . Thus, in order to avoid unnecessary intricate techn
developments, we shall assume throughout the paper tha
initial state is a pure eigenstate.

The coefficientsE@ ucpu2(t)# represent the probabilitie
that the particle driven by the random potential«V be ob-
served in the statef p at time t/«2 in the asymptotic frame-
work «→0. Equivalently, one can say that the measurem
of the energy at timet/«2,

E«~ t !5
1

2 ER
S U]c«

]x U2

1x2uc«u2D ~ t,x!dx, ~19!

will yield the eigenvaluep11/2 with probability

Cp~ t !5E@ ucpu2~ t !#.

This implies that the expected value of the energy can
expressed as

E~ t !5
1

2
1 (

p50

`

pCp~ t !. ~20!

Proposition III.1 is very useful since it allows us to compu
efficiently these relevant quantities:

Proposition III.3. The family @Cp(t)#pPN satisfies a
closed-form set of ordinary differential equations:
n

-
e

l
the

nt

e

dCp

dt
5

1

2 (
p852`

`

Gp,p1p8~Cp1p82Cp!, ~21!

starting fromCp(0)5dp,p0
.

Proof. Applying the infinitesimal generatorL to ucpu2

5X2p
2 1X2p11

2 , we have

dCp

dt
5E†2a2p,2p~X!12a2p11,2p11~X!12b2p~X!X2p

12b2p11~X!X2p11‡.

Substituting the corresponding expressions ofa2p,2p , . . .
into this equation readily yields the result. h

System~21! is one of the most important results of th
paper. It shows that the probabilitiesCp can be computed
theoretically from the coupling coefficientsGp,p1p8 , and
that their evolutions are self-consistent in the sense tha
other relevant quantities come into play. In particular, t
relative phases between the coefficients (cp) of the expan-
sion of the state vectorc in the basis (f p) have no impor-
tance in the asymptotic evolution of the probability distrib
tion (Cp). This statement is not at all obvious, since it is n
satisfied by original Eq.~8! or Eq. ~11!.

IV. INTERPRETATION OF THE LIMIT SYSTEM
IN TERMS OF A JUMP PROCESS

We shall show that the transition probabilitiesCp(t) can
be regarded as the statistical distribution of a jump proce
Let Nt be the Markov process with state spaceN ~i.e., the set
of all non-negative integer numbers! and infinitesimal gen-
eratorK:

K5
1

2 (
p8

GN,N1p8“p8 , ~22!

where “p8g(N)5g(N1p8)2g(N). (Nt) t>0 is a time-
homogeneous jump process defined on a probability sp
~V,F,P!. If at time t the process is in staten, then the prob-
ability that betweent and t1h the transitionn°n1p8 oc-
curs equalsGn,n1p8h1o(h). The probability that more than
one transition occurs iso(h). The operator“p8 corresponds
to a jump fromn to n1p8. The complete construction of th
processNt is the following @17, Sec. 7, Theorem 33#. There
exists a sequence of integer-valued random variables (j j ) j PN
and positive real-valued variables (t j ) j PN such that~see Fig.
1!

FIG. 1. Description of the jump process (Nt) in terms of the
variables (j j ) and (t j ).
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Nt5jn if (
j 50

n21

t j<t,(
j 50

n

t j .

The sequence (j j ) j PN is a Markov chain with stationary tran
sition matrixQ:

P~jn115p1p8/jn5p!5Qp,p1p8 ,

Qp,p1p8ªH 1

2

Gp,p1p8
q~p!

if p8Þ0

0 if p850,

q~p!ª
1

2 (
p9Þ0

Gp,p1p9 .

Given (j j ) j PN , the random variables (t j ) j PN are condition-
ally independent and exponentially distributed, with para
eters@q(j j )# j PN , that is,

P~t j>t !5exp@2q~j j !t#.

We denote byPt0 ,p0
the distribution of the paths (Nt) t>t0

starting at timet0 with the initial conditionNt0
5p0 . The

Markov process has stationary transition probabilities

Pt~p0 ,p!5Pt8,p0
~Nt81t5p!, independent oft8.

Furthermore,Pt is the unique probabilistic solution@i.e.,
Sp8Pt(p,p1p8)51# of the Kolmogorov’s forward equation
@18, Sec. X-3#:

]Pt

]t
~p0 ,p1!52q~p1!Pt~p0 ,p1!1(

p
q~p!Qp,p1

Pt~p0 ,p!.

~23!

Since q(p)Qp,p1
5 1

2 Gp,p1
5 1

2 Gp1 ,p we get that Eq.~23! is

equivalent to Eq.~21!, which implies the relationCp(t)
5P0,p0

(Nt5p). This interpretation of the transition prob
abilities is very powerful to solve problems and study syst
~21! since it allows us to apply existing results on Mark
jump processes, which can be found in the mathemat
literature.

Note that we have only showed that (Nt) gives the correct
statistical distribution of the measurement of the energy
the particle at a given timet. In terms of probability theory,
we have only proved that the one-dimensional distributio
of (Nt) and the ones of the energy distribution coincide. W
shall see that in fact (Nt) gives the correct statistical distr
bution of any sequence of measurements. For that purp
we revisit the postulates of quantum mechanics in terms
the jump processNt .

Postulate 1.The state vectorc obeys Schro¨dinger equa-
tion ~8!. The time evolution of the processNt is governed by
the Markovian dynamics described by infinitesimal genera
~22!.

Postulate 2.The measurement of the energy at~normal-
ized! time t will yield one of the eigenvalues (2p11)/2 with
probability Cp(t). The jump process 1/21Nt takes values
-

al

f

s
e

se
of

r

only in the set 1/21N. At time t one will find the value
1/21p with probability P0,p0

(Nt5p), which is equal to
Cp(t).

Postulate 3.If a measure at timet of the energy gives the
result 1/21p, then the state of the system will change fro
c(t) to f p as a result of the measurement. Let us assume
we start from statef p0

at time 0. If we observe the energy o
the particle at timest1 and t2 , then the probability for mea-
suring first the energy 1/21p1 and then 1/21p2 is equal to
the probability for observing 1/21p1 at t1 starting fromf p0

multiplied by the probability for observing 1/21p2 at t2
starting fromf p1

at t1 , because the system is in statef p1
just

after the measurement att1 . This product of probabilities
also reads asP0,p0

(Nt1
5p1)3Pt1 ,p1

(Nt2
5p2). From the

Markov property of the processNt , this product is exactly
equal toP0,p0

(Nt1
5p1 , Nt2

5p2). Of course, this statemen
can be generalized to any sequence of measurements so
we conclude that if we observe the energies of the particl
times t1 ,..., andtn , then the probability to measure the s
quence of energies 1/21p1 ,...,1/21pn is exactlyP0,p0

(Nt1
5p1 ,...,Ntn

5pn). This means that the dynamics of the o
servations is Markovian and exactly described by the ju
processNt ~Markovian means that the future is independe
from the past conditionally to the present!. More remarkable,
this property is essentially equivalent to Postulate 3 of qu
tum mechanics. Indeed, if instead of Postulate 3 we ass
that the dynamics of the observations is Markovian, then
after a measurement the system depends only on the res
the measurement that means that just after measuring
energy 1/21p1 , the system must be in a state with ener
1/21p1 with probability 1. Since there exists a unique eige
state f p1

with energy 1/21p1 , this means that the system

must be in statef p1
with probability 1 ~here the nondegen

eracy of the system plays a primary role!. As a conclusion,
Postulate 3 is exactly the right condition under which we c
extend the statement, ‘‘(Nt) describes the statistical distribu
tion of the measurement of the energy at some given tim
to the statement, ‘‘(Nt) describes the statistical distributio
of any sequence of measurements of the energy.’’

Interpretation of the technical conditions Hi in terms
the jump process.In order that the jump process be we
defined, it is necessary and sufficient to assume
Sp8GN,N1p8,` for everyN, which means that the first jump
starting fromN does not occur instantaneously. The requi
mentsSp8p8nGN,N1p8,` mean that the statistical distribu
tion of the first jump starting fromN has finite moments.
Finally, the conditionsSp8p8nGN,N1p8<Kn(11N)n prevent
the jump process from going to infinity in finite time.

General long-time behavior.Let us denote byA the set of
the accessible states, that is to say:

Aª$pPN,' a sequencep0 ,...,pn5p

such thatGpi ,pi 11
.0%.

In probability theoryA is the so-called communicating clas
which contains the initial statep0 . The number of elements
of the set is denoted byuAu. One can divide the possibl
evolutions of the process (Nt) into two different cases.

Proposition IV.1. If uAu5`, then for everypPN, we
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have Cp(t)→0 as t→`. If uAu,`, then the probability
distributions„Cp(t)…pPN converge ast→`:

Cp~ t ! ——→
t→`

H 1

uAu
if pPA

0 otherwise.

Proof. It is a universal feature thatP0,p0
(Nt5p) con-

verges ast→` as soon as (Nt) is a Markov process with
denumerable state space satisfying the continuity condi
P0,p0

(Nt5p)→dp,p0
ast→01 @19#, which is the case in ou

configuration. What remains is to find the values of the li
its. The proof is based on elementary tools of Markov p
cesses theory@17#. The process is irreducible within the cla
A. It is either recurrent or transient. In the transient ca
SnQn,1` in A3A. From the relation

E
0

`

P0,p0
~Nt5p!dt5(

n
~Qn!p0 ,p /q~p!,

we deduce that*0
`Cp(t)dt,` and necessarilyCp(t)→0 as

t→`.
In the recurrent caseSQn[1` in A3A and there exists

a positive measure overA, unique up to a multiplicative
constant, which is invariant with respect toQ: mQ5m. More
exactly, from the definition of the matrixQ and coefficients
q(p):

mQ5m⇔(
p8

Gp1p8,pm~p1p8!5(
p8

Gp,p1p8m~p!.

SinceGp,p1p85Gp1p8,p , we get thatm must satisfy for ev-
ery integerp:

(
p8

Gp1p8,p„m~p1p8!2m~p!…50.

Thus the invariant measure is simply the uniform meas
over A. Consequently, ifuAu,`, there exists an invarian
probability measure~i.e., with total mass 1!, which is m(p)
51/uAu, andCp(t) converges tom(p) by the ergodic theo-
rem for Markov chains. IfuAu5`, then the ergodic theorem
implies thatCp(t) converges to 0. h

The second case of the above proposition is a very spe
case, which occurs only for very particular configuratio
We shall see an example in Sec. VII. The general confi
ration is indeed the first one, and we can be much m
precise under complementary assumptions. We warn
reader that the hypotheses of the following proposition m
seem very strange and restrictive, but they are actually
filled in many examples, in particular, in the configuratio
that will be examined in the further sections.

Proposition IV.2. Let us assume thatuAu5` and that
there existsc,1 such that for every positive integern, the
following limits exist:

(
p852`

`

p8nGp,p1p8

pc1n21 ——→
p→`

an .
n

-
-

e

e

ial
.
-

re
he
y
l-

If an50 for n>3, and a1 or a2 is different from 0 and
satisfyca2<2a1 , then

Nt

t1/~12c! ——→
t→` H S ~12c!a1

2 D 1/~12c!

if a250

S ~12c!2a2

4 D 1/~12c!

Z if a2.0,

whereZ is a random variable whose distribution has a de
sity with respect to the Lebesgue measure over~0,̀ !:

pZ~z!5
12c

GS 2a12ca2

~12c!a2
D z211~2a12ca2! /a2 exp~2z12c!,

where G is the so-called Euler’s Gamma functionG(r )
ª*0

`sr 21e2sds.
Proof. SinceCp(t)→0 for any fixedp, the long-time be-

havior of Nt will depend on the coefficientsGp,p1p8 with
large indices p. Let r be positive real. SinceE@Nt

r #
5Sp50

` prCp(t), we have

dE@Nt
r #

dt
5

1

2 (
p50

`

pr (
p852`

`

Gp,p1p8~Cp1p82Cp!

5
1

2 (
p50

`

(
p852`

`

~p2p8!rGp2p8,pCp2prGp,p1p8Cp .

Changingp8 into 2p8 in the first term of the double sum
and using the fact thatGp1p8,p5Gp,p1p8 , we get that

dE@Nt
r #

dt
5

1

2 (
p50

`

(
p852`

`

@~p1p8!r2pr #Gp,p1p8Cp

.
r 2a21r ~2a12a2!

4 (
p50

`

pr 211cCp .

Choosingr 5n(12c), nPN and integrating, we get that th
moments of the processNt

12c satisfy

EF S Nt
12c

t D nG ——→
t→`

)
j 51

n
j ~12c!2a21~12c!~2a12a2!

4
,

from which we can deduce the result at hand. h
In the following sections we apply the general results deriv
in this paper to some particular and relevant situations.

V. A LINEAR PERTURBATION

This kind of perturbation corresponds to the evolution
a charged particle driven by a randomly time-depend
electric field. More exactly, let us assume that the parti
possesses a chargeq. Suppose that we apply an externa
homogeneous, and time-dependent electric fieldE0m(t). The
dimensionless functionm describes the time fluctuations o
the field. This corresponds to an electrostatic poten
E0xm(t) and a potential energy2qE0xm(t). The dimen-
sionless quantitye is a parameter, which characterizes t
amplitudes of the fluctuations and is defined by
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«ª
qE0

\1/2M1/2v3/2.

This situation is a particular case of the general framew
discussed in Sec. III withV(t,x)52xm(t). In such condi-
tions, Gp,p1p85gp,p1p8

2 ap8 , whereap8 is given by Eq.~17!
and

gp,p1p8
2

5H 2~p11! if p851

2p if p8521

0 otherwise.

Note thatSp8p8Gp,p1p852 andSp8p82Gp,p1p854p12. By
applying Proposition IV.2 withc50, a152a1 , and a2
54a1 , we get thatNt /(a1t) converges ast→` to a random
variable with exponential density and mean 1, which read
terms of the family of probabilities@Cp(t)#pPN as

Cp~ t ! .
t@1

1

a1t
expS 2

p

a1t D . ~24!

Besides, in this particular case, we are able to solve explic
homogeneous linear system~21! with any initial condition. If
the initial state isf p0

, then the distributionCp is for every
time t @11, Prop. 4.3#:

Cp~ t !5 (
j 5pm

p0 p0! p!

~p02 j !! 2 j ! ~p2p01 j !!

~a1t !p12 j 2p0

~11a1t !p1p011 ,

wherepmªmax(p2p0,0). We can then check that these e
pressions are consistent with long-time behavior~24!. Fur-
thermore, the energy growth is linear:

E~ t !5E~0!1a1t,

which was first established in Ref.@10#.

VI. A GAUSSIAN PERTURBATION

We consider in this section the case of a spatially Gau
ian potential V(t,x)5m(t)exp(2x2). Then Gp,p1p8
5gp,p1p8

2 ap8 , where ap8 is given by Eq.~17! and, from
tabulated formulas@20, formula 7.374.2#, we get

gp,p12p8
2

5
~2p12p821!! 2224p24p811

p! ~p1p821!! 2~p12p8!!
,

gp,p12p811
2

50.

Since exp(2x2) is an even function, odd transitions corr
sponding togp,p12p811

2 are forbidden. As a consequence,
the initial state is an even~respectively, odd! eigenstate, then
only even ~respectively, odd! eigenstates can be observe
We shall assume in what follows that the initial state is ev

A. Narrow-band coupling

We assume in this section that the power spectrum of
perturbationm has compact support so thata2.0 and a j
50 for j >4. After some algebra one can establish that
k

in

ly

s-

.
.

e

(
p852`

`

p8Gp,p1p852a2~gp,p12
2 2gp,p22

2 ! .
p@1

2
2a2

pp2 ,

(
p852`

`

p82Gp,p1p854a2~gp,p12
2 1gp,p22

2 ! .
p@1

4a2

pp
.

Applying Proposition IV.2 withc522, a1522a2 /p, and
a254a2 /p, we get that the jump processNt associated with
this configuration satisfies

Nt

t1/3 ——→
t→`

zncZnc ,

where zncª(9a2 /p)1/3 and Znc is the positive-real-valued
random variable whose distribution is characterized by
probability density

pnc~z!5
3

G~1/3!
e2z3

,

whereG(1/3).2.679. ComputingE@Znc#5)G(2/3)2/(2p)
.0.505, the expected energy grows ast1/3 for large t:

E~ t ! .
t@1

zncE@Znc#t
1/3,

and the histogram@Cp(t)#pPN is asymptotically

C2p~ t ! .
t@1

6

G~1/3!znct
1/3expS 2

8p3

znc
3 t D . ~25!

The resolution of Eq.~21! by a standard numerical routin
~see Fig. 2! confirms thet1/3 long-time behavior of the ex-
pected energy, but it also reveals that the short-time beha
of the expected energy strongly depends on the initial st
If the initial state is a low-order eigenstate, then the ene
first grows quite rapidly to reach the asymptotict1/3 rate. If
the initial state is a high-order eigenstate, then the ene
first decreases, so that the long-time curves correspondin
the different initial states are quite close to each other.

This dynamics is made more transparent when analyz
the evolutions of the probability distributions@Cp(t)#p of the
energy. In Figs. 3–5 one can observe the different step

FIG. 2. Expected energyE(t) of the particle under time-
dependent perturbations with spatial Gaussian shape in the nar
band case witha251/(12p). The particle is assumed to be att
50 in the state 0, 2, or 4. Remember that all quantities are dim
sionless by the transformations explained in Sec. II.
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the reorganizations of the probability distributionsCp for
different initial conditions. It appears that if the initial state
a low-order eigenstate@i.e.,Cp(0)5dp,p0

for smallp0], then
the short-time dynamics consists in filling high-order pro
abilities in order to get asymptotic shape~25!. Conversely, if
the initial state is a high-order eigenstate@Cp(0)5dp,p0

for

largep0#, then the short-time dynamics consists in filling t
low-order probabilities in order to get the asymptotic sha
That is why the expected energy either grows or decreas
the initial state is either low or high order. Furthermore, t
convergence to an asymptotic shape whatever the initial s
guarantees that the expected energy will have a long-t
behavior independent of the initial condition.

B. Broadband coupling

We assume here that the power spectrum of the pertu
tion m is flat so thatap8[a for everyp8. Since

(
p852`

`

p8Gp,p1p8 .
p@1

a

4ApAp
,

(
p852`

`

p82Gp,p1p8 .
p@1

aAp

Ap
,

FIG. 3. Theoretical histograms of the probability distributio
@Cp(t)#pPN of the state of the particle under time-dependent per
bations with spatial Gaussian shape in the narrow-band case
a251/(12p). The particle is assumed to be att50 in the state 0, 2,
or 4. Heret5103. Only even states have positive probabilities. T
solid line corresponds to approximate formula~25!. It is clear that
the histograms have still the memory of the initial state.

FIG. 4. The same as in Fig. 3, but att5104. The histograms
corresponding to the cases where the initial state is the fundam
or the second mode are identical and coincide with asymptotic
mula ~25!, while the histogram corresponding to the initial statef 4

is still different.
-

.
if

te
e
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we get by applying Proposition IV.2 withc521/2, a1

5a/(4Ap), anda25a/Ap, that the jump processNt asso-
ciated with this configuration satisfies

Nt

t2/3 ——→
t→`

zbcZbc ,

where zbcª@9a/(16Ap)#2/3 and Zbc is the positive-real-
valued random variable whose distribution is characteri
by the probability density

pbc~z!5
3

2G~2/3!
e2z3/2

,

where G(2/3).1.354. Computing E@Zbc#
52)p/@9G(2/3)#2.0.659, the expected energy grows
t2/3 for long t:

E~ t ! .
t@1

zbcE@Zbc#t
2/3,

and the histogram@Cp(t)#pPN is asymptotically

C2p~ t ! .
t@1

3

G~2/3!zbct
2/3expS 2

~2p!3/2

zbc
3/2t D . ~26!

Figure 6 plots the probability distributions@Cp(t)#pPN at a
given time for different initial conditions. Comparing wit
Figs. 3–5, it clearly appears that the coupling mechanis
which tend to strengthen the probabilities corresponding

FIG. 5. The same as in Fig. 3, but att5105. All histograms are
identical and coincide with asymptotic formula~25!.

FIG. 6. Theoretical histograms of the probability distributio
@Cp(t)#pPN of the state of the particle under time-dependent per
bations with spatial Gaussian shape in the broadband case wa
51/(12p). The particle is assumed to be att50 in the statef 0 , f 2 ,
or f 4 . Here t5100. Only even states have positive probabilitie
The solid line corresponds to approximate formula~26!.
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the high-order eigenstates, are quicker than in the narr
band case. Indeed, the flat power spectrum of procesm
makes possible long-range jumps of the processNt , while a
narrow-band spectrum only authorizes jumps to the nea
neighbors. That is why the energy grows much quic
(;t2/3) in the broadband case than in the narrow-band c
(;t1/3). In the general case, that is to say whatever the sp
trum of the perturbation, the energy grows at a rate betw
the above regimes, i.e., betweent1/3 and t2/3.

VII. A SPATIALLY PERIODIC PERTURBATION

We consider in this section the case of a spatially perio
potential V(t,x)5m(t)cos(bx). Then Gp,p1p85gp,p1p8

2 ap8 ,
whereap8 is given by Eq.~17! and, using tabulated formula
@20, formula 7.388.7#:

gp,p12p8
2

5S b2

2 D 2p8 p!

~p12p8!!
e2b2/2Lp

2p8S b2

2 D 2

,

gp,p12p811
2

50,

where the Ln
m are the Laguerre polynomials defined b

@20, formula 8.970#

Ln
m~x!ª

1

n!
exx2m

dn

dxn ~e2xxn1m!.

For large p and even p8 smaller than p, we have
@20, formula 8.978.3#

gp,p1p8
2 .

1

p S b2p

2 D 21/2

cos2SA2pb22
p

4 D . ~27!

We shall assume that the initial state is an eigenstat
even indexp0 . Only the probabilities corresponding to eve
eigenstates are weighted by the effective evolution, as sh
by the fact thatgp,p1p8 is zero if p8 is odd. This is, of
course, also readable on the spatial form of the perturba
which is the even function cosine.

A. Narrow-band coupling

In order to have a clear and simple presentation, we s
first assume that the processm has a power spectral densi
with compact support and that onlya2 is different from 0, so
that the set of evolution equations reduces as

dC2p

dt
5

a2

2
@g2p,2p12

2 ~C2p122C2p!

1g2p22,2p
2 ~C2p222C2p!#. ~28!

The structure of the coupling coefficientsgp,p12
2 is shown on

Fig. 7. As demonstrated also by formula~27! the coefficients
get almost zero at some indices 2p1,2p2 , . . . . Evolution
~28! strongly depends on the coefficients, which are zero
very close to 0. Let us assume first that there exists an e
index such thatgp,p1250 and denote by 2p1 ~respectively,
2p2) the largest~respectively, smallest! index smaller~re-
spectively, larger! than p0 , which satisfies this vanishing
condition. If all coefficients with indices smaller thanp0 are
-
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positive, thenp150. If all coefficients with indices larger
thanp0 are positive, thenp25`. Then no transition towards
eigenstates of indices larger than 2p2 and smaller than 2p1 is
possible. Applying Proposition IV.1 yields that the fami
Cp(t) converges ast→` to

C2p~`!5H 1

p22p1
if p111<p<p2

0 if p.p2 or p<p1 .

In terms of the expected energyE(t)51/21SppCp(t), this
corresponds to the asymptotic value

E~`!5p11p213/2.

If there exists no vanishing coupling coefficients, there ex
nevertheless coefficients whose values are very close to
as shown by Eq.~27!. The transitions through such indice
are very slow and will actually be the ones that will impo
the evolution rate of the probabilities (Cp).

Figure 8 plots the expected energy for different init
conditions. It appears that the behavior of the energy
pends on the initial statef p0

. The mechanism behind thi
statement can be made more transparent when regardin
evolutions of the probability distributions (Cp): Figure 9
puts into evidence that the histograms strongly depend on
initial state. To understand the picture it is necessary to
member from Fig. 7 that there exists two indices, name

FIG. 7. Coupling coefficientsgp,p12
2 for evenp for a spatially

periodic potential with periodb2151. Note in particular that the
first indices, which correspond to very small values, are 2p1512
and 2p2534.

FIG. 8. Expected energyE(t) of the particle under time-
dependent perturbations with spatially periodic shape (b51) in the
narrow-band case (a251). The particle is assumed to be att50 in
the statef 0 , f 4 , f 8 , . . . , or f 20.
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2p1512 and 2p2534, which correspond to very small va
ues of the coupling coefficientsg2p,2p12

2 . Consequently, if
p0<2p1 , then the histograms first tend to a uniform dist
bution over@0,2p1#, but for times longer than a few hun
dreds there is also some leakage to the second area†2p1
12,2p2‡ ~see Fig. 10!. In terms of the expected energy, th
implies thatE(t).p111/256.5 for times of the order of a
few hundreds. Nevertheless, due to the slight leakage
wards high-order states, the energy then grows beyond
value at a slow rate. If 2p112<p0<2p2 , then the histo-
grams first tend to a uniform distribution over@2p1
12,2p2#, but there is also some leakage to the first a
@0,2p1# for times of the order of a few hundreds. One c
also notice that there is almost no leakage towardsp
.2p2 , and this is related to the fact that the val
g2p2,2p212.9.231025 is much closer to 0 thang2p1,2p112

.2.931022. In terms of the expected energy, this impli
thatE(t).p11p213/2524.5 for times of the order of a few
hundreds. For longer times, due to the leakage towards
eigenstates of indices smaller than 2p1 , the energy decrease
below the value 24.5 at a slow rate. Finally, note in Fig.
that for very long times~of the order 105), the small leakages
through 2p1 lead to a uniform distribution of the probabil
ties C2p over @0,2p2# for all initial configurationsf p0

with

p0<2p2 . If one waits even longer, one will be able to dete

FIG. 9. Theoretical histograms of the probability distributio
@Cp(t)#pPN of the state of the particle under time-dependent per
bations with spatially periodic shape (b51) in the narrow-band
case (a251). The particle is assumed to be att50 in the statef 0 ,
f 4 , f 8 , . . . , or f 20. Heret52.53103.

FIG. 10. Theoretical histograms of the probability distributio
@Cp(t)#pPN of the state of the particle under time-dependent per
bations with spatially periodic shape (b51) in the narrow-band
case (a251). The particle is assumed to be att50 in the funda-
mental state 0.
o-
is

a

he

t

a small leakage through 2p2 towards eigenstates of indice
larger than 2p2 and so on.

B. Broadband coupling

Let us now analyze the case of a broadband perturbat
which has a large number of positive coefficientsa2p8 . We
can expect that such a broadband coupling allows jumps w
a range larger than 2 and makes it possible to bypass
difficult points exhibited here above. This argument is p
tially true. Indeed, Fig. 12 plots the coefficientsgp,p1p8

2 as
functions of p for different p8. It clearly shows that all
curves have similar shapes, but the slow points are shifte
a quantity, which depends onp8. Unfortunately, for largep
the indices for whichgp,p1p8 are very small do not depen
on p8, as shown by formula~27!. Let us assume there exis
a large integerps , the so-called bandwidth, such thatap8
5a if up8u<ps and 0 otherwise. In such conditions, a
eigenstate with energyp11/2 will be called a slow point if
the values of the coefficientsgp,p1p8

2 are very small for all
up8u<ps , in the sense that they are much smaller than
typical valuep21/2 exhibited by formula~27!. For large in-
dicesp, the coefficientsgp,p1p8 can be approximated by Eq
~27!, so that it appears that the slow points are group
around particular pointspk that are indexed by an integerk
and expressed as the integral parts ofp2/(2b2)(k21/4)2.
More exactly, aroundpk , the coupling coefficients can b
estimated by

sup
uq0u,uq1u<p8

gpk1q0 ,pk1q1

2 ;
bp82

&ppk
3/2

for p8!pk .

r-

r-

FIG. 11. The same as in Fig. 10, but the time evolution of
expected energyE(t) is plotted for long times.

FIG. 12. Coupling coefficientsgp,p1p8
2 for evenp andp8 for a

spatially periodic potential with periodb2151.
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Consequently, ifp!ps
2, then there existsp8,ps such that

gp,p1p8
2 ;p21/2, which means that the broadband coupling

sufficient for eliminating the slow points. But, forp@ps
2,

there are intervals aroundpk of length larger than 2ps ,
which consist of successive states that are slow points;
jump process cannot avoid the slow points anymore; the
responding coupling coefficients have small values a
supup8u<ps

gp,p1p8
2 is of the orderps

2p23/2!p21/2. Therefore,
there are always slow points, whatever the spectrum of
random processm, and the discussion we have presented
the narrow-band case still holds true qualitatively.

VIII. NUMERICAL SIMULATIONS

The results in the previous sections are theoretically v
in the limit case«→0, where the amplitude~respectively,
duration! of the perturbations goes to zero~respectively, in-
finity!. In this section we aim at showing that the asympto
behaviors of the state vector can be easily observed in
merical simulations in the case where the perturbation
small, so that its effect appears after a long time. We us
split-step method to simulate the one-dimensional pertur
linear Schro¨dinger equations~8!, and more exactly a fourth
order variant@21#, so that we obtain a reliable numeric
algorithm, which provides accurate solutions even for a lo
computational time domain. We adopt in this section
following model for the perturbation:

V~ t,x!5m~ t !exp~2x2!,

m~ t !5ul if l 1a0<
t

tc
, l 1a011,

where (ul) l 50, . . . ,M21 is a sequence ofM-independent and
identically distributed variables, which obey uniform dist
butions over the interval@21/2,1/2#, and a0 is a random
variable independent ofu, which also obeys an uniform dis
tribution over@21/2,1/2#. tc is the so-called coherence tim
of the random processm. The autocorrelation function of th
ergodic process m is equal to E@m(0)m(t)#5 1

12 (1
2t/tc)It<tc

, so that the power spectral density defined by E
~17! is

FIG. 13. Evolution of the energy of the particle computed
simulation of perturbed Schro¨dinger equation~8! and averaged ove
200 realizations and in comparison with the theoretical formu
given by Eqs.~21! and ~20!. The initial state vector is the funda
mental statef 0 .
he
r-
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ap85
1

12

12cos~p8tc!

p82tc
,

anda05tc/24. The quantityMtc , which is equal to the time
duration of the perturbation, will be chosen so large that
can observe the effect of the small perturbation«V. We mea-
sure theL2 norm and energy~19! of the particle that we can
compare with the corresponding data of the incident s
vector. We present results corresponding to simulati
where the initial state atz50 is the fundamental Gaussia
mode f 0(x) or the second modef 2(x). We have first simu-
lated the homogeneous Schro¨dinger equation~with V[0),
which admits as an exact solutionf 0(x)e2 i t /2 and
f 2(x)e25i t /2, respectively. We can, therefore, check the a
curacy of the numerical method, since we can see that
modulus of the computed solution maintains a very clo
resemblance to the initial field~data not shown!, while theL2

norm and the energy are almost constant. The other sim
tions are carried out with different realizations of the rando
processm with «51. In Figs. 13 and 14 we present th
simulated evolutions of the energy of the particle averag
over 200 realizations and compare them with the mean
oretical evolutions given by Eq.~21! in the scalet/«2. It thus
appears that the numerical simulations are in very go
agreement with the theoretical results. All these observati
confirm that system~21! describes with accuracy the evolu
tion of the harmonic oscillator under small perturbations a
long times.

IX. CONCLUSION

We have analyzed in this paper the effects of very gen
types of random perturbations on the evolution of a quant
particle. The precise results we have got are limited to
quantum harmonic oscillator. For such a system the eig
values and eigenstates are explicit and tabulated formulas
available, so that we are able to perform exact calculati
and compute closed-form expressions for the eigenst
probabilities. Nevertheless, the results demonstrated in
paper can be generalized to a large class of systems. Ind
the basic assumption, which requires the existence of a c
plete set of normal eigenstates for the unperturbed Ha
tonian, holds true for most of them. The only—b
important—restriction to insure that our results can be
plied is the nondegeneracy of the energy levels. The rem

s

FIG. 14. The same as in Fig. 13, but the initial state vector is
second modef 2 .
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der of the study then consists in technical development
exhibit and analyze the coupling mechanisms between
eigenstates. Furthermore, we feel that the problem co
sponding to a degenerate system could be addressed wit
i,
to
e

e-
the

above techniques with some more work, although it will i
volve a mechanism more complicated than the jump proc
exhibited in this paper. This will be the subject of a furth
work.
th.

-

h-
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